Face Recognition Beyond the Visible Spectrum

نویسندگان

  • Pradeep Buddharaju
  • Ioannis Pavlidis
  • Chinmay Manohar
چکیده

The facial vascular network is highly characteristic to the individual, much like the way his fingerprint is. A non-obtrusive way to capture this information is through thermal imaging. The convective heat transfer effect from the flow of “hot” arterial blood in superficial vessels creates characteristic thermal imprints, which are at a gradient with the surrounding tissue. This casts sigmoid edges on the human tissue where major blood vessels are present. We present an algorithmic methodology to extract and represent the facial vasculature. The methodology combines image morphology and probabilistic inference. The morphology captures the overall structure of the vascular network while the probabilistic part reflects the positional uncertainty for the vessel walls, due to the phenomenon of thermal diffusion. The accuracy of the methodology is tested through extensive experimentation and meticulous ground-truthing. Furthermore, the efficacy of this information for identity recognition is tested on substantial databases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heterogeneous Face Recognition with CNNs

Heterogeneous face recognition aims to recognize faces across different sensor modalities. Typically, gallery images are normal visible spectrum images, and probe images are infrared images or sketches. Recently significant improvements in visible spectrum face recognition have been obtained by CNNs learned from very large training datasets. In this paper, we are interested in the question to w...

متن کامل

A Comparison of Face Detection Algorithms in Visible and Thermal Spectrums

Face Detection is the first step of facial recognition algorithms and has been widely researched in the visible spectrum. Current research has shown that thermal facial recognition is as accurate as the visible spectrum recognition algorithms. This paper presents three face detection algorithms in both long-wavelength infrared (LWIR) images and visible spectrum images. The paper compares the Vi...

متن کامل

Infrared face recognition using texture descriptors

Face recognition is an area of computer vision that has attracted a lot of interest from the research community. A growing demand for robust face recognition software in security applications has driven the development of interesting approaches in this field. A large quantity of research in face recognition deals with visible face images. In the visible spectrum the illumination and face expres...

متن کامل

Toward hyperspectral face recognition

Face recognition continues to meet significant challenges in reaching accurate results and still remains one of the activities where humans outperform technology. An attractive approach in improving face identification is provided by the fusion of multiple imaging sources such as visible and infrared images. Hyperspectral data, i.e. images collected over hundreds of narrow contiguous light spec...

متن کامل

On DeSIgnIng SWIR TO VISIbLe FAce MATchIng ALgORIThMS

Recent advances in facial recognition have trended towards cross-spectrally matching visible gallery face images to probe face images captured under different wavelengths of the electromagnetic spectrum. In this article, we study the problem of matching visible images to images taken in the short-wavelength infrared (SWIR) spectrum, more specifically, the 1550-nm band. There are many benefits t...

متن کامل

Thermal to Visible Synthesis of Face Images using Multiple Regions

Synthesis of visible spectrum faces from thermal facial imagery is a promising approach for heterogeneous face recognition; enabling existing face recognition software trained on visible imagery to be leveraged, and allowing human analysts to verify cross-spectrum matches more effectively. We propose a new synthesis method to enhance the discriminative quality of synthesized visible face imager...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007